SMARTPHONE HARDWARE: ANATOMY OF A HANDSET

Mainak Chaudhuri
Indian Institute of Technology Kanpur
Commonwealth of Learning Vancouver

MOOC on M4D 2013
Outline of topics

• What is the hardware architecture of a smartphone?
• How does communication take place in a smartphone?
• Where does a user application execute in a smartphone?
• What are the important peripheral devices in a smartphone?
• Which processors are commonly used in a smartphone?
• What is ARM TrustZone?
Outline of topics

- What is the hardware architecture of a smartphone?
 - How does communication take place in a smartphone?
 - Where does a user application execute in a smartphone?
 - What are the important peripheral devices in a smartphone?
 - Which processors are commonly used in a smartphone?
 - What is ARM TrustZone?
Smartphone hardware architecture

- GPS
- Display/TS
- KBD
- Camera
- μphone
- Speaker

Main memory (DRAM)

Application processor

- Operating system and drivers
- Run-time system
- Middleware

Application software

Transmitter/Receiver

SIM Card

Modem processor

Operating system and baseband radio interface

MOOC on M4D 2013
Smartphone hardware architecture

• A system-on-chip architecture with three primary components
 – An application processor executing the end-user’s application software with assistance from the middleware and operating system (OS)
 – A modem or baseband processor with its own operating system components responding to the baseband radio activities (transmission and reception of audio, video, and other data contents)
 – A number of peripheral devices for interacting with the end-user
Outline of topics

• What is the hardware architecture of a smartphone?

➢ How does communication take place in a smartphone?

• Where does a user application execute in a smartphone?

• What are the important peripheral devices in a smartphone?

• Which processors are commonly used in a smartphone?

• What is ARM TrustZone?
Communication mechanism

• Reception
 – The receiver hardware (part of the modem) senses incoming signals and generates interrupts for the radio interface logic of the operating system
 • The radio interface and the operating system software run on a baseband or modem processor
 – Once the reception begins (after a physical layer handshake), the incoming audio, video, and other data are processed by the modem processor
 – The radio OS components talk to the peripheral device drivers to present the incoming data to the user through appropriate devices (display, speaker, etc.)
Communication mechanism

• Transmission
 – The data to be transmitted are collected by the radio OS components from memory regions populated by the device drivers
 • For example, audio data captured by the microphone driver or an image or a video captured by the camera or a position information captured by the GPS device
 – These data can be further processed by the modem processor to suite the transmission protocol
 – A transmission is initiated by the radio interface logic through the modem transmitter hardware

• The subscriber identification module (SIM) plays an important role in reception and transmission
Outline of topics

• What is the hardware architecture of a smartphone?
• How does communication take place in a smartphone?
 ➢ Where does a user application execute in a smartphone?
• What are the important peripheral devices in a smartphone?
• Which processors are commonly used in a smartphone?
• What is ARM TrustZone?
User applications

• Application processor executes the user applications and the related OS services
 – Applications include audio/video codec and players, games, image processing, speech processing, internet browsing, text editing, etc.
 – Application processor takes help from graphics accelerators as and when needed
 • Most handheld applications are graphics-intensive
 – Handhelds come with reasonably large amount of storage in the form of volatile SDRAM (1-2 GB) as well as non-volatile compact storage (10+ GB)
 – The OS is mostly a traditional one, stripped down and optimized to cater to smartphone applications
Outline of topics

• What is the hardware architecture of a smartphone?
• How does communication take place in a smartphone?
• Where does a user application execute in a smartphone?
 ➢ What are the important peripheral devices in a smartphone?
• Which processors are commonly used in a smartphone?
• What is ARM TrustZone?
Peripheral devices

• These are the I/O devices through which the end-user interacts with the handheld
 – The OS needs to have the driver software installed for each such device
 – Typical peripheral devices
 • LCD and touchscreen
 • Keyboard
 • Camera
 • GPS
 • Speaker and audio output for headset/earphone
 • Microphone
 • Bluetooth and Wifi
 • HDTV
Outline of topics

• What is the hardware architecture of a smartphone?
• How does communication take place in a smartphone?
• Where does a user application execute in a smartphone?
• What are the important peripheral devices in a smartphone?
 ➢ Which processors are commonly used in a smartphone?
• What is ARM TrustZone?
Processors in handhelds

• Need to balance performance, power consumption, and cost

• ARM-based processors are very common
 – Optimized for battery life as well as performance
 – Remarkably low area and transistor count
 • Important for small form factors and low energy drain

• Modem processor is either a separate ARM core or a DSP extension of the application processor ARM core
 – Some architectures use a modem accelerator along with the application processor core
Processors in handhelds:
A typical ARM-based smartphone hardware

Photo courtesy: www.arm.com
Processors in handhelds

- Modern handhelds include multiple application processor cores (two, four, or eight)
 - Samsung Galaxy S4 i9500 comes in two possible configs
 - 1.9 GHz quad-core ARM Krait + Qualcomm’s Adreno GPU
 - 1.6 GHz quad-core ARM Cortex-A15 + 1.2 GHz quad-core ARM Cortex-A7 + Imagination’s PowerVR GPU (only four cores out of the eight app. cores can be active at a time)
 - Apple iPhone 5
 - 1.3 GHz dual-core Swift (ARMv7-based) + PowerVR GPU
 - Nokia Lumia 920T
 - 1.7 GHz dual-core Qualcomm Krait + Adreno GPU
 - Lenovo K900
 - 2.0 GHz dual-core Intel Atom Z2580 + PowerVR GPU
Processors in handhelds

• Modern handhelds include multiple application processor cores (two, four, or eight)
 – Samsung Nexus 10
 • 1.7 GHz dual-core ARM Cortex-A15 + ARM Mali-T604 GPU
 – Asus Nexus 7
 • Nvidia Tegra 3 platform with 1.2 GHz quad-core ARM Cortex-A9 + ultra-low-power Nvidia GeForce GPU

• These multi-core app. processors can deliver excellent performance although low-power remains a primary goal for longer battery life
Outline of topics

• What is the hardware architecture of a smartphone?
• How does communication take place in a smartphone?
• Where does a user application execute in a smartphone?
• What are the important peripheral devices in a smartphone?
• Which processors are commonly used in a smartphone?

➢ What is ARM TrustZone?
ARM TrustZone

• ARM TrustZone is a hardware-software solution for security in handhelds
 – Important pieces of information such as various encryption keys must be protected
 – TrustZone hardware allows the application processor to execute in one of the three modes: normal, monitor, and secure
 • Normal to secure transition happens through monitor
 – TrustZone software offers a set of secure OS services and the capability to add new user-defined secure services through TrustZone APIs such as SIM-locking
ARM TrustZone

• ARM TrustZone is a hardware-software solution for security in handhelds
 – TrustZone hardware adds a “non-secure” or NS bit to every address space to distinguish between secure and non-secure information
 • Registers holding encryption keys would be mapped to secure address space
 – If an application tries to access a data residing in a secure address space while the processor is not executing in secure mode, an error is returned
 – In secure mode, the secure OS services and the secure device drivers are invoked

MOOC on M4D 2013
Questions

• What is your smartphone?
• Which processors does it use? Does it have a dedicated graphics processing unit (GPU)?
• How much storage does it have?
• What peripheral devices does it have?

• Question to ponder about: Can a cluster of smartphones be used some day to do energy-efficient high-performance computing (e.g., weather modeling)?
 – Era of extreme green computing
Thank you!